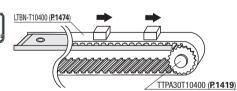

Guide per cinghie dentate

Caratteristiche: guide per evitare la flessione delle cinghie e la deriva durante il trasporto.



Codice componente		L	P (Passo fori) -	Н	K Selezione diam. nomi-	Cinghia appli-	۸	В	С	D	Е
Tipo Nominale		Incrementi di 10mm	Incrementi di 5mm	Numero di fori	nale lavorazione fori	cabile	Α	В	C	ט	
	100		-	-	-	T5100, AT5100	12	8.6	20	10	1.4
	150					T5150, AT5150	17	0.0	23	10	1.4
	150A					T10150, AT10150	17	9	23	12	3
BTG (Senza fori)	200					T5200	22	8.6	30	10	1.4
(Seriza IOII)	200A	200~1800	F0 F00	0.40	4.5.0	T10200, AT10200	22	9	30	12	3
BTGZ (1 fila di fori svasati)	250	200~1000	50~500	2~10	4, 5, 6	T10250, AT10250	27	9	35	12	3
BIGZ (I IIIa di Idii svasati)	250B			, l		T5250	21	8.6	35	10	1.4
	300					T10300	32		42		
	400					T10400	43	9	53	12	3
	500					T10500	53		63		

PApplicabile alle cinghie non elencate in "Cinghia applicabile". Verificare larghezza e altezza dei denti prima dell'uso. &Larghezza nominale cinghia 100 non disponibile per BTGZ.

ering mple	Codice c	omponente Nominale	-	L	-	Р	-	Н	-	K Diam. nominale lavorazione fori	
,	BTG BTGZ	150 200A	Ė	300 1200	į	P160	_	Н8	_	K5	

Prezzo	corpo							Addebi	to lavorazione
Codice componente			Numero di	BTGZ					
Tipo Nominale		Prezzo corpo L200~400							(1 fila di fori svasat
	100							2	
	150							3	
BTG	150A							4	
	200							5	
	200A							6	
BTGZ	250							7	
(+ Addebito lavorazione	250B							8	
fori)	300							9	
	400							10	
	500							10	

Proprietà dei materiali ed esempi d'uso delle cinghie dentate lunghe

Proprietà dei materiali delle cinghie dentate lunghe (P.1473, P.1474)

Resistenza chimica (cinghie dentate lunghe in Iron Rubber® P.1473) O: Resistenza limitata

X : Non resistenti
Sostanza

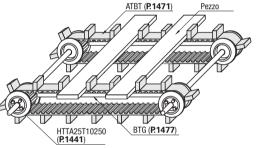
Sostanza	Resistenza	Sostanza	Resistenza	Sostanza	Resistenza
Acido acetico 5%	×	Soluzione acquosa di idrossido di sodio 5%	×	N-esano	
Acido acetico glaciale (38°C)	×	Soluzione acquosa di idrossido di sodio 10%	×	Idrazina	X
Acido acetico non glaciale	×	Soluzione acquosa di idrossido di potassio al 5%	×	N-Metilpirrolidone	X
Acido cloridrico 5%	×	Bicromato di sodio 20%		Isoottano	
Acido nitrico 10%	×	Acqua di mare	\triangle	Alcool isopropilico	Δ
Acido solforico 20%	×	Acetone	×	Kerosene	Δ
Acido solforico fumante 20%	×	Metiletilchetone	×	Benzina	
Acido solforoso	×	Alcool etilico	×	Cherosene	Δ
Acido formico	×	Alcool metilico	×	Olio di lino	0
Acido idrocianico	×	Acetato di etile	×	Ricino	0
Acido fluoridrico 10%	×	Tetracloruro di carbonio	×	Naftalene	Δ
Solfuro di idrogeno	×	Benzene	×	Olio di soia	0
Gas di cloro	×	Bisolfuro di carbonio	×	Birra	0
Soluzione acquosa di fosfato trisodico		Diottilftalato	0	Resina fenolica	X
Soluzione acquosa di acido citrico		Cloroetano	×	Tetracloroetilene	X
Bromo anidro (soluzione)	×	Glicole etilenico	\triangle	Xilene	X
Soluzione acquosa di acido borico		Ossido di etilene		Olio combustibile A	
Soluzione acquosa di cloruro d'ammonio		Acido fluorosilicico	\triangle	Olio combustibile B	X
Soluzione acquosa di cloruro di calcio		Formaldeide 40%	×	Olio combustibile C	X
Soluzione acquosa di ipoclorito di calcio		Clorobenzene	×	Dimetileformamide	X
Soluzione acquosa di cloruro di sodio		Cicloesano	\triangle	Tetraidrofurano	X
Soluzione acquosa di solfato d'ammonio		Dibutilftalato		Toluene	×
Soluzione acquosa di idrossido d'ammonio	×	Glicerina		Soluzione di acqua ossigenata	X
👣 dati riportati sono solo di	riferime	ento; prima dell'uso effettuare d	delle pro	ve.	

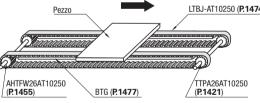
Verificare la compatibilità prima dell'uso.

Resistenza chimica (cinghie dentate lunghe in poliuretano P.1474)

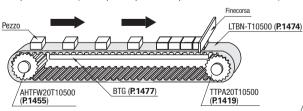
-): Resistenti :: Resistenza limitata

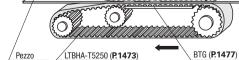
×: Non resistenti		
Sostanza	Resistenza	Sostar
Acido acetico		Kerosene
Acetone		Grasso
Cloruro di alluminio (umidità 5%)	0	Metanolo
Soluzione di ammoniaca (10%)	0	Metanolo/Benzina
Anilina	×	Metiletilchetone
Olio ASTM N.1	0	Cloruro di metile
Olio ASTM N.2	0	Olio minerale
Olio ASTM N.3		Acido nitrico 20%
Benzene		Benzina normale
Alcool butilico	\triangle	Benzina super
Acetato di butile	×	Soluzione salina
Tetracloruro di carbonio	×	Acqua di mare
Cicloesanolo		Soluzione acquosa di
Gasolio	0	Idrossido di sodio
Dimetileformamide	×	Tetraidrofurano
Etanolo		Toluene
Acetato di etile	×	Tricloroetilene
Etere	0	Acqua
n-Eptano	0	
Acido cloridrico 20%	\triangle	
Cloruro ferrico (umidità 5%)	\triangle	
Isopropanolo		

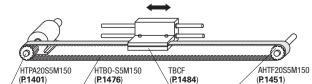

Non applicabile quando la temperatura è superiore a 40°C oppure se le cinghie sono immerse in una soluzione o liquido.

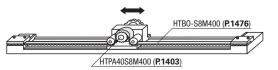

TTPA30T5100 (**P.1417**)

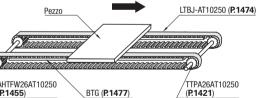
TTPA30T5100 (**P.1417**)


■Esempi d'uso delle cinghie dentate lunghe/aperte (P.1473~1476)


• Trasporto in simultaneo (trasporto di pezzi regolarmente distanziati con l'uso di tasselli) • Trasporto verticale (trasporto di pezzi leggeri con l'uso di tasselli)




- Trasporto ad accumulo (uso del tipo con copertura in tela per ridurre il coefficiente di attrito)
- Trasporto a trazione (trasporto di pezzi tra le cinghie)



• Trasmissione lineare (moto alternato con cinghie aperte)

